Fe-vacancy Ordering in Fe-Se Nano-structures and Its Role for Superconductivity

Maw-Kuen Wu, National Dong-Hwa University
1, Da-Hsueh Road, Section 2, Shoufeng, Hualien 97401, Taiwan
(Invited keynote)

Abstract

Ever since the discovery of FeSe superconductor, the exact chemical stoichiometry of the compound remains an unresolved issue. Previous studies showed that the superconducting property of β-Fe$_{1+\delta}$Se is very sensitive to its stoichiometry. In Fe-Se binary phase diagram, the PbO-type tetragonal structure only stabilized at Fe-rich side, while bulk superconductivity was observed in samples with δ close to 0.015. The recent discovered alkali/alkaline-intercalated iron selenide $A_{1-x}Fe_{2-y}Se_2$ superconductors with rich superconducting phases, where $A = K, Rb, Cs, Tl$, attracted great attention not only due to its high superconducting transition temperature (T_c, up to 46 K), but also because of their dissimilar characteristics as compared to other iron-based superconductors, especially its seemingly intrinsic multiphase nature, and the presence of iron vacancies and orders in the non-superconducting regime. The most frequently observed Fe-vacancy order in $A_{1-x}Fe_{2-y}Se_2$ is $\sqrt{5} \times \sqrt{5} \times 1$ superstructure, which yields a phase of $A_{0.8}Fe_{1.6}Se_2$ or $A_2Fe_4Se_5$. Experiment has further shown that the type of vacancy and magnetic orders is highly sensitive to the stoichiometry of $A_{1-x}Fe_{2-y}Se_2$.

The complexity of phases and phase separation during crystal preparation in $A_{1-x}Fe_{2-y}Se_2$ make it difficult to conclusively verify the phase-property relationship, even for the superconducting phases. β-Fe$_{1+\delta}$Se, on the other hand, has the simplest structure among all iron-based superconductor families. Several surprising results related to the Fe-Se system appeared in the literature during the past years, including the enhancement of T_c to about 40 K under high pressure, and the intriguing extremely high T_c (with superconducting energy gap of ~20 meV) in molecular beam epitaxy (MBE) grown single layer FeSe.

We have also demonstrated the presence of superconducting-like feature with T_c close to 40 K in samples of nano-dimensional form. Therefore, it is quite natural to ask whether the presence of the complex phases observed in $A_{1-x}Fe_{2-y}Se_2$ compounds and Fe-vacancy order exist in samples without alkaline metals. Here we present the first discovery of iron vacancies and three types of vacancy orders in tetragonal β-Fe$_{1+\delta}$Se, characterized by analytical transmission electron microscopy (TEM). Our observations imply new phase diagram should be considered in the Fe-Se superconductors.
